
Multi-Agent Planning with Agent Preferences

Jesús Virseda and Susana Fernández and Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
jvirseda@inf.uc3m.es, sfarregu@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

In the field of Automated Planning, there is a renewed
interest in Multi-Agent Planning (MAP). In this paper,
we focus on the task of planning efficiently when agents
have preferences over goals and want to maintain privacy.
Our approach takes as input a MAP task, and a prefer-
ence of each agent for each goal. Those preferences
can be mapped into utilities (rewards) and are modeled
as costs (penalties) when planning. The planner has to
generate a valid plan taking into account the agent’s pref-
erences and the cost of actions. We compare different
approaches for assigning goals to agents that heed either
the expected costs or preferences, and plan considering
either costs or preferences.

Introduction
In the field of Multi-Agent systems, there has been plenty
of work on self-interested agents. Most works focus on ne-
gotiation, auctions, or single-decision tasks. In Multi-Agent
Planning (MAP), planners should also take into account the
fact that they have to generate a valid plan (where a sequence
of actions is involved, which is different to other sequences
of decisions in Multi-Agent systems, as repeated auctions).
In MAP, there has not been many approaches yet that focus
on self-interested agents. Current work by Nissim and Braf-
man (2013) focused first on optimal planning, minimizing
the cost of plans, to then compute a posteriori the payoff
(utility) of agents participating in a plan. This payoff is, in
other words, a fair payment for each agent proportionally
according to its contribution based on plan costs. So, it does
not take into account preferences that agents might have a
priori on achieving specific goals.

In this paper, we focus on a different task, which is
based on several past and current projects of our group,
where each agent has private information and preferences
over goals. We will call it the Multi-Agent Planning with
Preferences (MAPP) task. For instance, in logistics trans-
portation domains, each branch of a transportation com-
pany has preferences over goals (moving some goods at
some place) since they might prefer a transport task over
another (Garcı́a et al. 2013). Likewise, in an ESA (Eu-
ropean Space Agency) project, sensors must be assigned
(as satellites or antennas) to observe objects based also on
some preferences of sensors over objects (Arregui et al.

2012). Finally, in two more projects we dealt with tourist
plans where each user has a set of preferences over goals
(places to visit) (Cenamor, de la Rosa, and Borrajo 2013;
Castillo et al. 2008). So, our main aim is to efficiently find
good-quality plans that maximize preference over goals while
maintaining agents privacy.

Here, we propose an approach for MAP where agents
have explicit preferences over goals, which can be inde-
pendent of costs to achieve the goals. Solutions ideally
would minimize the cost while maximizing the compli-
ance with the preferences of all agents. Here, we ex-
tend the distributed approach proposed in (Borrajo 2013b;
2013a) (MAPR) for solving MAP tasks. MAPR first assigns
goals to agents and then iteratively solves each agent problem
preserving the privacy of agents during the process. More-
over, MAPR flexibility allows us to use any state-of-the-art
planner.

In order to reason with preferences, we have to model
them into planning tasks. Preferences can be implemented
in a positive or negative way. That is to say, if preferences
over goals are seen as rewards for the agents which achieve
the goals, they are positive preferences; and if preferences
are seen as penalties, they are negative preferences. Since
most planners work minimizing total-cost metrics, we use
the negative implementation of preferences.

Thus, the problem of MAP with preferences can be under-
stood as a multi-criteria optimization problem, where two
different and not related metrics must be minimized: cost and
penalty. In our approach, we work with two PDDL domain
files and their respective problem files. The cost domain and
problem model the original planning task, ignoring agent
preferences. And, the penalty domain and problem ignore
action costs. In this latter case, penalties are added in the
effects of the actions that achieve goals. We study here the
impact in terms of runtime, cost and reward of using both
metrics at two different steps in the algorithm: when assign-
ing goals to agents; and during search while the planner is
solving each agent MAP task.

The next sections formalize the MAPP task, describe the
employed MAPR approach for distributed MAP, give the de-
tails of the preferences over goals compilation as penalties,
explain the experimental setup and show the results, con-
trast the differences with related work and finalize with the
conclusions of this work.

Multi-Agent Planning Tasks with Preferences
We are interested in MAP tasks with Preferences (MAPP)
that can be formally defined as:

Definition 1. A MAPP task for a set of self-interested agents
Φ = {φi}mi=1 with private and public information is a tuple
Π = {F,A, I,G, c, p} where:

• F = FP ∪ {Fi}mi=1 is a set of fluents that can be public,
FP , or private for each agent, {Fi}mi=1

• A = {Ai}mi=1 ∪ AE is the set of instantiated actions that
agents can perform, {Ai}mi=1, and the optional set of exter-
nal actions, AE , performed by other agents not in Φ

• I ⊆ F is an initial state

• G ⊆ F is a set of goals

• c : A→ < is a cost function representing the cost of every
action a ∈ A

• p : Φ, G → < is a preference function representing the
preference that agent φ ∈ Φ has for achieving goal g ∈ G
Each action a ∈ A is described by a set of parameters

(par(a)), a set of preconditions (pre(a)), that represent literals
that must be true in a state to execute the action and a set of
effects (eff(a)), literals that are expected to be added (add
effects) or removed (delete effects) from the state after the
execution of the action. The actions of an agent φi can be
described as: Ai = {a ∈ A | φi ∈ par(a)}. And external
actions are: AE = {a ∈ A | par(a) ∩ Φ = ∅}.

The planning task should generate as output a sequence of
actions π = (a1, . . . , ak) such that if applied in order would
result in a state sk where goals are true: G ⊆ sk. We will
later define the plan cost.

A MAPP task Π can be naturally decomposed into a set of
partial planning subtasks, one for each agent {Πp

i }mi=1 as:

• Πp
i = {F pi , A

p
i , I

p
i , G

p
i }

• F pi = FP ∪ Fi
• Api = Ai ∪AE
• Ipi = I ∩ (Fi ∪ FP)

• Gpi = G ∩ (Fi ∪ FPi)

where FPi is the subset of public goals assigned to agent
φi: ∀i, FPi ⊆ FP and ∪mi=1FPi = G ∩ FP . We will see
later how we assign a subset of the public goals to each
agent. As explained in the next section, our MAP algorithm
solves Π by iteratively solving a subset of planning subtasks
M = {Πp+

1 , . . . ,Πp+
n }, n ≤ m (since not all agents will

need to plan). Each Πp+
i completes Πp

i with the information
communicated by the previous agents in the iteration.

In our work, we consider that privacy is directly related to
the information on the state and goals that agents have on a
particular domain and problem. Others consider that actions
are also public or private, which is not our case. It is only
the information on preconditions and effects of actions that
is private or public (Nissim and Brafman 2013). Preserving
privacy in our work means that agents solve their planning
subtasks without ever knowing the private information of
other agents. Thus literals l ∈ F are considered either private

or public. In case they are private, they belong to a given
agent φi and they should only be known and modified by φi
when planning. In particular, literals l ∈ I and l ∈ G can
be private or public in turn. In order to maintain privacy, our
planner obfuscates some planning components when agents
finish their planning episodes, and communicate them to the
following agents, as explained later.

As an example, in the Transport domain of the Interna-
tional Planning Competition (IPC)1 several vehicles (agents)
must transport packages among locations. Fluents derived
from the PDDL predicates (at ?x - vehicle ?v - location) and
(in ?x - package ?v - vehicle) and from the function (capacity
?v -vehicle) are private. The cost of the action drive depends
on the road length and the other actions have a cost of 1. In
this IPC domain, problems goals only derive from the (at ?x -
package ?v - location) predicate. Since the action drop is the
only one that achieves the at predicate, drop is the only ac-
tion achieving goals of Transport problems, and thus the only
one that provides rewards to agents. The function p defines
the preference every vehicle has for dropping every package
involved in the goals. There are no external actions in this do-
main. In other domains, as in the Driverlog where the agents
are the drivers, there are external actions, such as load-truck
and unload-truck, since no agent (driver) intervenes in any of
the two.

MAPR
MAPR automatically generates the partial planning subtasks
{Πp

i }mi=1 from the PDDL description of a domain and prob-
lem and from the agents description (public goals are as-
signed to agents at this point). Next, the MAPR algorithm
iteratively solves each agent problem. 2 Once an agent solves
a problem, it obfuscates the private components of the solu-
tion and communicates them to the next agent. In turn, the
next agent should solve its own problem augmented with the
obfuscated private part of the solution of the previous agents
and the public part of those solutions. Therefore, MAPR sees
MAP as plan reuse. An important aspect of the algorithm
consists on how to assign public goals to agents. As we will
explain below, it uses several standard strategies.

Figure 1 shows a high-level description of the algorithm,
where we use @ to express obfuscated private information.
It takes as input a MAP task (domain, problem and agents
description), a goal assignment strategy, the planner to be
used by the first agent, and a second planner (it might be the
same one) to be used by the following agents. The reason to
use two planners (that could be different) is that the second
planner might be a replanning system. Since all inputs and
outputs are in PDDL, MAPR can use any state-of-the-art
planner. The algorithm is then composed of six main steps:
goal assignment; first planning episode; obfuscation of the
private part of a plan and communicating information to the
next agent; merging of a prior agents plan with a planning
problem; subsequent planning episodes; and termination.
The goal assignment strategy may not assign goals to some of

1http://ipc.icaps-conference.org/
2For a more detailed description, we refer the reader to (Borrajo

2013b).

the agents and thus these agents are not used in the planning
process. As a side comment on the algorithm, in the second
and following iterations, when j = 1, then j−1 means j = n
(n ≤ m). So, the first agent, instead of generating a new
plan using the first planner, it takes as input the obfuscated
solution from the last agent on the previous iteration. Since
MAPR can iterate over each agent once it has completed
the first iteration over all agents, MAPR benefits from an
implicit backtracking. So, if in the first iteration an agent
could not complete its goals due to a wrong decision (such as
using a particular action for achieving a goal, or consuming
a common resource that another agent needs), MAPR could
potentially find a solution if it can be generated by the set of
chosen agents.

Function MAPR (M,GA,FP, SP): plan

M : multi-agent planning task
GA: goal assignment strategy
FP : first planner
SP : second planner

Assign subset of public goals to each agent φi using GA
π1 ←First-Plan(FP,Πp

1)
j ← 1
Repeat until Termination
j ← j + 1
If j > n Then j ← 1
φj−1 Obfuscates its private information, S@

j−1:
• the plan π@

j−1 and
• the problem Π@

j−1 = {F@
j−1, A

@
j−1, I

@
j−1, G

@
j−1}

φj−1 Communicates S@
j−1 to agent φj

φj creates a new planning task, Πp+
j :

• it Merges its assigned problem and S@
j−1

πj ←Second-plan(SP,Πp+
j)

If solved, return last plan

Figure 1: High level description of MAPR planning algorithm.

Goal Assignment
Given the total set of public goals G and a set of agents Φ,
MAPR first has to assign a subset of goals to each agent to
lower the planning complexity of each individual planning
episode. For each goal in g ∈ G and agent in φi ∈ Φ,
MAPR computes a relaxed plan from the initial state of each
agent, Ii, following the well known relaxed plan heuristic of
FF (Hoffmann and Nebel 2001). If the relaxed plan heuristic
detects a dead-end, then c(g, φi) = ∞. This will define
a cost matrix, c(G,Φ). Next, we have devised four goals
assignment schemes.

all-achievable: MAPR assigns each goal g to all agents φi
such that c(g, φi) <∞; that is, if the relaxed plan heuristic
estimates g could be reached from the initial state of φi, g is
assigned to φi.

rest-achievable: MAPR assigns goals iteratively. It first
assigns to the first agent φ1 all goals that it can reach (cost
less than∞). Then, it removes those goals from the goals

set, and assigns to the second agent all goals that it can reach
from the remaining set of goals. It continues until the goals
set is empty.

best-cost: MAPR assigns each goal g to the agent
that can potentially achieve it with the least cost,
arg minφi∈Φ c(g, φi)

load-balance: MAPR tries to keep a good work balance
among agents. It first computes the average number of goals
per agent, k = |G|

m . Then, it starts assigning goals to agents
as in best cost. When it has assigned k goals to an agent, it
stops assigning goals to that agent. The next goals that could
be assigned to this agent will be redirected to the second best
agent for each goal. At the end, agents will have either all k
goals, or m− 1 agents will have k goals and one agent will
have the remaining goals, | G | −k × (m− 1).

In configurations rest-achievable and best-cost, there can
be agents for which MAPR does not assign goals.

Obfuscation
If an agent φj solves its subproblem, then it cannot pass
the private information openly to the next agent. So, it ob-
fuscates3 the private parts and communicates an augmented
obfuscated solution S@

j to the next agent. There can be po-
tentially many algorithms for obfuscating the information.
In this paper, we use the same simple version of this proce-
dure described in (Borrajo 2013b). Depending on the privacy
commitment of the planning task, more complex obfuscating
algorithms could be used and the difference will be: more
time devoted to the obfuscating algorithm (their time com-
plexity is usually much less than the one of planning); and
potentially more space of the obfuscated information (any
obfuscating algorithm with a space polynomial complexity
could be used without affecting the overall multi-agent plan-
ning complexity).

In our case, obfuscating is a two steps process. First, a
random substitution is generated for the names of all private
predicates, actions and objects. Action names are obfuscated
given that, in our privacy preserving scheme, other agents
do not need to know the specific actions used by any agent
to achieve the goals, even if all information used by those
actions is public. As a reminder, in our privacy preserving
scheme, actions are not considered public or private; it is
only the propositions that are private or public. For instance,
in the Satellite domain, if a plan contains an instantiated ac-
tion as (calibrate sat1 inst1 Phen6), given that
calibrate and inst1 are private, MAPR would generate
a random substitution as: 4

σ ={(calibrate . g12) (inst1 . g23)},
resulting in (g12 sat1 g23 Phen6)

The second step in obfuscation consists of applying the
substitution to the plan. An augmented obfuscated solution
S@
j consists of the obtained plan and the set of components

that are needed by the rest of agents to regenerate that solu-
tion. More specifically, if the plan of φj is πj = (a1, . . . , at),
it communicates S@

j = {π@
j , A

@
j , I

@
j , G

@
j } to φj+1:

3We will use obfuscate indistinctly of encrypt.
4We are describing the process in the PDDL lifted version, in-

stead in the propositional version.

• the set of instantiated actions in the plan, after obfuscating
them, A@

j , by obfuscating the actions parameters (par(ai)),
preconditions (pre(ai)), and effects (eff(ai)):
A@
j = {a@i | ai ∈ πj , a

@
i = (par(ai) |σ, pre(ai) |σ, eff(ai) |σ)}

where we use the notation α |σ to represent the result of
applying substitution σ to formula α.

• the obfuscated plan, π@
j = {a@

1 , . . . , a
@
t }, since we can

use planning by reuse in the next iteration instead of plan-
ning from scratch.

• all goals (private and public, including goals of previous
agents), after obfuscating the private ones,5

G@
j = {g@ | g ∈ Gj , g@ = g |σ}

• initial state, after obfuscating the private information.
Since MAPR only needs to pass to φj+1 the relevant pri-
vate part of the state, it only considers the literals that are
preconditions of any action in the plan:

I@
j = {f@ | f ∈ Ij , ai ∈ πj , f ∈ pre(ai), f

@ = f |σ}

Planning with Preferences
In MAPP tasks, there are two independent metrics: cost and
preferences. We deal with cost as in regular planning settings.
Definition 2. The cost of a plan π is defined as: C(π) =∑
ai∈π c(ai).
Preferences cannot be handled directly by current plan-

ners, as they can only minimize metric values (in fact, most
current planners only allow the definition of one metric in
a domain file, named total-cost). Thus, we have to map
preferences to a minimizing criteria, as penalty. Preferences
are defined for goals and agents, while metrics are defined in
actions. Thus, we have to map preferences into action costs.
In order to define the mapping, we first translate agent-goals
preferences into actions rewards.
Definition 3. The reward r(ai, gk, π) an action ai receives
for achieving a goal gk in plan π is defined as:

r(ai, gk, π) =


p(φj , gk) if φj ∈ par(ai) and

ai is the last achiever
of goal gk in π

0 otherwise

So, actions only receive a reward if they are the only ones
that achieve a top-level goal and there is an agent that ex-
ecutes it. We are assuming that the preference relation is
defined for each agent and goal. Now, we can define the total
reward that an action receives.
Definition 4. The total reward an action ai receives in a
plan π is defined as:

r(ai, π) =
∑

gk∈G,gk∈eff(ai)
r(ai, gk, π)

Now, the reward of a plan is the sum of all rewards obtained
by the preferences for goals of the agents that achieved those
goals.

5Substitution only affects the private goals.

Definition 5. The total reward R(π) of a plan π is defined
as R(π) =

∑
ai∈π r(ai, π).

Since most planners minimize total-cost metrics, in this
paper preferences are converted into penalties (negative pref-
erences) in a standard way.
Definition 6. The penalty ρ(ai, gk, π) an action ai receives
for achieving a goal gk in plan π is defined as:

ρ(ai, gk, π) =

{
rmax − r(ai, gk, π) if ai is the last achiever

of goal gk in π
0 otherwise

where rmax is the maximum possible reward.
Definition 7. The total penalty an action ai receives in a
plan π is defined as:

ρ(ai, π) =
∑

gk∈G,gk∈eff(ai)
ρ(ai, gk, π)

We are interested in agent preferences for achieving goals,
so we implement the penalties as increments of the total-
cost function only in the actions that achieve goals when
they achieve a goal predicate. For example, in the Transport
domain where goals derive from the at predicate and only the
drop action has at as a positive effect, a new effect (increase
(total-cost) (penalty-vehicle-at ?v ?l ?p)) is added. The init part
of the problem contains the values of the penalty-vehicle-at
function. Only instantiations with the same parameters as
some of the goals have values different from 0.

Now, we can define the total penalty of a plan (equivalent
to a reward obtained by fulfilling the agents preferences).
Definition 8. The total penalty P (π) of a plan π is defined
as P (π) =

∑
ai∈π ρ(ai, π).

Note that r(ai, gk, π) (and consequently ρ(ai, gk, π) too)
includes the condition that ai is the last one in the plan π that
achieves a goal gk. Thus, this definition is plan dependent. In
this paper, we are interested in domains where goals need to
be achieved only once and it is not necessary to undo achieved
goals. Hence, we can assume that r(ai, gk, π) ' r(ai, gk)
and ρ(ai, gk, π) ' ρ(ai, gk).

Since most state-of-the-art planners only allow the
minimization of the total-cost function as the unique
metric (as, for instance, all planners based on FAST-
DOWNWARD (Helmert 2004)), we define two domains for
each planning task. As a side note, this is interesting given
that the initial idea of defining metrics in PDDL was that
domains could reason on different metrics (so all problems
in a given domain would use the same domain file) and it
would be in the problem where one would define which met-
ric to use for that particular problem. Now, we are forced
to define N different domains, one for each metric, while
we only need one problem! The first domain is the original
one, ignoring agents preferences. And the second domain
implements penalties as a total-cost metric. The problem task
is common for both domains: the original problem enriched
with the penalty information.

Formally, we can say that given a MAPP task Π =
{F,A, I,G, c, p}, a MAPP task Π′ with penalty costs can
be obtained by the following transformation:

Definition 9. Given a MAPP task with action costs and
preferences over goals Π = {F,A, I,G, c, p} the equiv-
alent MAPP task with penalty costs can be defined as
Π′ = {F ′, A, I ′, G, c′} with:

• F ′ = F ∪ Fp, where Fp = {ρij |gi ∈ G,φj ∈ Φ}. Each
ρij is a PDDL function representing the penalty agent φj
has for achieving goal gi.

• I ′ = I ∪ Fp
• G′ = G ∪ Fp
• c′ : A→ <+ is a new cost function defined as:

c′(a) = ρ(a, gi)

Therefore, given a MAPP task Π = {F,A, I,G, c, p}, we
work with two MAPP tasks: Π′ with penalty costs as defined
in Definition 9 and Π′′ = {F,A, I,G, c} with standard costs
and no preferences. Then, we use the extended MAPR algo-
rithm following four strategies: use Π′′ for assigning goals
to agents and for planning (cc); use Π′ for both (pp); use Π′

for assigning goals and Π′′ for planning (pc); and use Π′′

for assigning goals and Π′ for planning (cp). And we can
use different metrics to evaluate the quality of the generated
plans: plan cost C(π), plan reward R(π), plan penalty ρ(π)
and plan utility U(π) = R(π)−C(π) that relates the reward
and the cost. In unit-cost domains, plan cost is the length of
the solution plan. All measures apply to all strategies. Even
if strategies cp and pp ignore action costs when planning, it
is possible to compute C(π) a posteriori by consulting the
costs c(ai) in π. Penalty and reward are opposed values, so
it is possible to compute one value based on the other. Also,
even if goals are assigned by the agents preferences/costs
(so it selects agent φj because it is the one with highest-
preference/lowest-cost over goal gi) MAPR does not force
that in the final plan it is in fact agent φj that achieves gi.

This approach is valid only when the goals need to be
achieved once. Thus, the actions that are late achievers of
goals will be the only achievers of goals (definition of ρ
depends on the plan). However, in domains like the Sokoban
an agent could place a stone in a goal position, and then
another agent might have to move the stone to a different
position to fulfill all problem goals. In this case, the reward
obtained by the first agent when it places the stone in the
temporal goal position should be subtracted from the total
reward, so only late achievers get credit. An alternative
way to solve a MAPP task Π that avoids this problem is to
transform Π into a new task with soft goals and negative
utilities and then compile them away using the technique
described in (Keyder and Geffner 2009). Negative utilities
stand for conditions to be avoided; for example, a utility
u(p ∧ q) = -10 penalizes a plan that results in a state where
both p and q are true with an extra cost of 10. We are not
using this definition in this paper, since the domains we used
in the experiments do not have this problem. However, we
provide at least the solution to this problem here. The MAPP
task ΠS with soft goals and negative utilities that is equivalent
to Π can be obtained by the following transformation:
Definition 10. Given a MAPP task Π = {F,A, I,G, c, p},
the equivalent MAPP task with soft goals and negative utili-
ties is defined as ΠS = {FS , AS , I, GS , c, ν} where:

• GS = G ∪ {Gp}ni=1, where {Gp}i = {γij |gi ∈ G,φj ∈
Φ} are the new soft goals γij representing that agent φj
achieves the goal gi with its corresponding preference
value p(φj , gi)

• FS = F ∪ {Gp}ni=1

• AS transforms every action a ∈ A|(gi ∈ eff(a)) ∧ (gi ∈
G)∧ (φj ∈ par(a)) by adding as a new effect the soft goal
γij ∈ {Gp}i

• ν : {Gp}ni=1 × {Gp}ni=1 → R− is the negative utility
function defined over every pair (γij , γik) in the following
way ν(γij ∧ γik) = −p(φj , gi)

Properties
The approach we propose to solve preference problems in
MAPP inherits the properties of MAPR, i.e. it is suboptimal,
sound and incomplete.

Experiments and Results
We have used the following experimental setup for compari-
son:

Comparing approaches. We compare different dis-
tributed strategies against a centralized approach. These
distributed strategies are the ones previously defined (cc, pc,
cp, and pp). We only show a centralized approach to un-
derstand the relation between a distributed approach which
preserves privacy and a centralized one that does not pre-
serve privacy. Thus, the centralized approach has an ad-
vantage over the distributed approach. The centralized ap-
proach is LAMA11, the winner of the last IPC (Helmert 2004;
Richter and Westphal 2010). We are interested here on ef-
ficient MAPP computation. Therefore, we have used only
the first search iteration of LAMA11, that is one run of lazy
greedy best first search with actions costs, and FF and LM-
cut heuristics with preferred operators. We plan to move
into optimal planning or at least improve the quality of the
solutions with anytime behavior in the future.

Domains. We have chosen four domains from the previous
IPCs that have been regularly used in MAP papers: Rover,
Satellite, Transport and Zenotravel. This selection has been
done according to our main motivation: domains close to real
world problems where agent preferences are relevant. The
Transport domain implements action-costs while the other
three are unit-cost. The maximum penalty / reward are set
as 10 in all of them, because it seems to be intuitive to ask
users for preferences in scales from zero to ten. Costs are
the original ones used in the IPC and penalties have been
generated randomly to ensure independence from the cost
values.

Goal assignment. We have used the four defined methods:
all-achievable, rest-achievable, load-balance and best-cost.

Planners. We have used the centralized approach ex-
plained above for generating the first agent plan and for the
successive planning episodes too.

Time and memory bounds. We have used 1800 seconds
and 6GB RAM as in the IPC.

Scores. We have used the following metrics, similar to
those used in the IPC, to compare the different approaches:

• Coverage is the number of solved problems by each ap-
proach.

• Runtime score (ST) over a set of problems P , assuming
that T ∗p > 0, is computed as

ST =
∑
p∈P

1

1 + log
Tp

T∗
p

where T ∗p is the minimum time required to solve the prob-
lem p by any approach, and Tp is the time required by the
approach we want to calculate the score.

• Cost score (SC) over a set of problems P is computed as

SC =
∑
p∈P

C∗p
Cp

where C∗p is the minimum cost of any solution of the prob-
lem p and Cp is the cost of the solution by the approach
we want to calculate the score. This scores is called quality
score in the IPC.

• Reward score (SR) over a set of problems P is calculated
as

SR =
∑
p∈P

Rp
R∗p

where R∗p is the maximum reward achieved in any solution
of the problem p and Rp is the reward obtained by the
approach we want to calculate the score.

• (Reward, Cost) pareto-dominance gives to each approach a
score that equals the number of tuples it pareto-dominates
for the same problem. (R,C) is said to pareto-dominate
(R′, C ′) if and only if R ≥ R′ and C ≤ C ′. We use this
score instead of a utility score to avoid having to normalize
the reward and cost values.

We prefer (Reward, Cost) pareto-dominance instead of
a utility score (reward - cost), because the utility subtracts
two amounts in different metrics. Therefore, the weight of
both metrics on the score depends on the domain / problem;
whether the plan solutions are long or short, or whether the
actions costs are high or not in comparison to the number of
goals to achieve, which sets the maximum reward achievable
in the problem.

Tables 1, 2, 3 and 4 show the runtime, cost and penalty
score results for the domains Rover, Satellite, Transport and
Zenotravel, respectively. Table 5 summarizes all the score
results in a table.

In terms of coverage, the only domain that presents difficul-
ties is the Transport domain, where only the configurations
of the rest-achievable goal selection can solve all problems.
However, configurations that use costs when planning with
the best-cost goal selection obtain good results in coverage
too.

The fastest approach in all domains but Rover uses penal-
ties and the rest-achievable strategy during goal selection and
costs for planning. Only the centralized approach using cost
metric outperforms it in the Rover domain. Globally, the
rest-achievable strategy is the best one when we want to find
a solution fast.

Table 1: Results in the Rover domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 16.06 15.36 16.74 16.14
load-balance 15.16 14.66 15.01 14.73
rest-achievable 18.36 17.31 18.14 17.44
all-achievable 14.93 14.44 14.79 14.53
centralized 18.60 18.96
SC pc pp cp cc
best-cost 18.00 17.62 18.19 19.18
load-balance 18.73 17.90 17.90 18.73
rest-achievable 18.08 17.29 17.29 18.08
all-achievable 19.35 17.83 17.83 19.35
centralized 18.41 19.64
SR pc pp cp cc
best-cost 16.53 19.57 16.62 14.11
load-balance 14.13 17.94 17.94 14.13
rest-achievable 14.64 17.03 17.03 14.64
all-achievable 14.23 19.77 19.77 14.23
centralized 19.63 14.45
(R,C) pareto-d. pc pp cp cc
best-cost 85 96 101 76
load-balance 65 95 93 60
rest-achievable 59 69 64 54
all-achievable 62 104 108 57
centralized 149 87

The best quality plans in all domains, except for the Trans-
port, are obtained by the centralized approach using the cost
metric. In the Transport domain, surprisingly, the best config-
urations are the ones that select goals with the rest-achievable
strategy and plan with penalties. The score in the Transport
domain by the rest-achievable strategy is clearly influenced
by its high coverage. On the other hand, the Transport domain
is the only one that implements action-costs (the other three
are unit-cost) and the first solution is not the most relevant
one to compare the quality of the approaches. Furthermore,
the rest-achievable goal selection strategy distributes goals
without taking into account the costs / penalties, pruning the
search. In the other strategies, the best configurations are the
ones that plan using costs, as it was expected. The best-cost
goal selection strategy obtains good results in terms of the
cost score when it selects the goals using the action-costs and
plans with the same metric.

The reward score is the most diverse of all. Globally, the
best approach for this metric is the centralized approach using
penalties in planning tasks. In the Rover domain, though,
the best configurations use the all-achievable goal selection,
and plan with penalties. In the Transport domain the best
configuration uses the rest-achievable goal selection strategy,
and in the Zenotravel domain the best-cost goal selection

Table 2: Results in the Satellite domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 15.96 14.16 15.78 16.61
load-balance 15.62 13.87 14.23 15.20
rest-achievable 19.16 16.54 17.28 18.24
all-achievable 15.27 13.64 13.89 14.89
centralized 13.81 18.14
SC pc pp cp cc
best-cost 17.87 16.67 17.10 17.85
load-balance 17.64 16.72 16.72 17.64
rest-achievable 17.81 16.06 16.06 17.81
all-achievable 18.01 15.73 15.73 18.01
centralized 16.28 19.29
SR pc pp cp cc
best-cost 10.76 17.43 14.61 9.23
load-balance 10.76 14.99 14.99 10.76
rest-achievable 6.19 12.38 12.38 6.19
all-achievable 9.26 16.55 16.55 9.26
centralized 17.98 10.01
(R,C) pareto-d. pc pp cp cc
best-cost 92 102 86 75
load-balance 77 80 81 79
rest-achievable 48 49 45 46
all-achievable 61 57 56 60
centralized 106 118

using penalties to select the goals and to plan.
Finally, the (Reward, Cost) pareto-dominance indicates

which are the best balanced approaches; those which domi-
nate more often the other ones in both metrics: reward and
cost. The best balanced approach is the centralized one,
specifically when it uses the costs. In the Transport domain
the rest-achievable approaches obtain the best results influ-
enced by the coverage. In the Rover domain, approaches
which use penalties to plan are significantly better than those
which use costs to plan. On the opposite side is the Zeno-
travel domain, where the best approaches are which uses
costs to plan. In the rest of domains, the results are similar.

Table 5 shows that most MAPP configurations score higher
than the centralized approach in runtime. In the other metrics,
at least one of the MAPP configurations obtained a score
close to the centralized approach. As a reminder, the cen-
tralized approach cannot be directly compared against our
configurations, given that it does not preserve privacy.

Analyzing the results in more depth, we can affirm that the
distributed approaches become to outperforms the centralized
ones when the problems come to be more difficult. This fact
can be observed in the Transport domain, the most difficult
one, where distributed approaches obtain the best results in
all the scores. Additionally, approaches that plan using cost

Table 3: Results in the Transport domain.
coverage pc pp cp cc
best-cost 18 15 17 19
load-balance 16 14 14 17
rest-achievable 20 20 20 20
all-achievable 13 12 11 13
centralized 14 17
ST pc pp cp cc
best-cost 10.56 7.51 9.79 12.99
load-balance 10.25 7.16 7.19 10.51
rest-achievable 19.66 15.90 16.04 18.52
all-achievable 6.35 5.38 4.96 6.37
centralized 5.64 8.42
SC pc pp cp cc
best-cost 13.19 10.38 13.11 15.42
load-balance 12.34 10.06 10.06 13.00
rest-achievable 16.16 17.30 17.30 16.16
all-achievable 9.76 7.52 6.76 9.76
centralized 9.63 13.09
SR pc pp cp cc
best-cost 12.38 11.29 12.22 12.92
load-balance 9.74 9.47 9.47 10.47
rest-achievable 15.04 15.03 15.03 15.04
all-achievable 7.37 8.71 7.79 7.37
centralized 13.98 12.73
(R,C) pareto-d. pc pp cp cc
best-cost 59 43 75 68
load-balance 30 39 37 42
rest-achievable 122 128 128 123
all-achievable 12 16 12 15
centralized 61 83

get better results in terms of cost score and approaches that
plan using penalties get better reward score results. If the
goal selection step employs either cost or penalty metric does
not seem to affect so much these scores.

Related Work
Most work on multi-agent planning for self-interested agents
focuses on finding stable solutions in the spirit of game the-
ory (Brafman et al. 2009; Crosby and Rovatsos 2011). Agents
have their own goals and are able to form coalitions, costless
binding agreements, to fulfill them. A stable solution is a
coalition’s joint plan such that no subset of its agents would
benefit by joining an alternative coalition. Agents’ payoffs
are computed a posteriori and depend on the total cost of
the actions carried out by the agents. Nissim and Brafman
proposed a privacy-preserving distributed mechanism to find
cost optimal solutions that also calculates the payments to
each agent (Nissim and Brafman 2013). We model the self
interest of the agents with the preference function, indepen-
dently of the cost. And, we calculate suboptimal and not
stable solutions.

Oversubscription planning problems also define prefer-
ences on the goals (Keyder and Geffner 2009; Smith 2004).
They assume it is not possible to achieve all soft goals due to

Table 4: Results in the Zenotravel domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 15.06 13.73 15.91 16.48
load-balance 14.96 13.80 14.06 14.67
rest-achievable 19.93 17.97 18.61 19.11
all-achievable 14.74 13.57 13.76 14.24
centralized 14.19 15.77
SC pc pp cp cc
best-cost 16.03 14.60 15.95 17.73
load-balance 16.00 14.54 14.54 16.00
rest-achievable 17.35 15.85 15.85 17.35
all-achievable 18.28 14.68 14.68 18.28
centralized 14.65 19.29
SR pc pp cp cc
best-cost 15.25 18.61 15.74 14.18
load-balance 14.76 16.21 16.21 14.76
rest-achievable 12.17 11.23 11.23 12.17
all-achievable 15.26 17.80 17.80 15.26
centralized 18.39 15.11
(R,C) pareto-d. pc pp cp cc
best-cost 98 97 118 118
load-balance 87 83 82 88
rest-achievable 74 77 74 74
all-achievable 132 100 100 131
centralized 115 148

limited resources. The objective is to find a plan that maxi-
mizes the utility, modeled through goal preferences (possibly
keeping the cost under a certain bound (Garcı́a-Olaya, de la
Rosa, and Borrajo 2011)). Keyder and Geffner showed that
soft goals can be compiled away avoiding the need to devise
specific algorithms for handling them (Keyder and Geffner
2009). Unlike oversubscription planning, our work assumes
all goals are hard, every one must be achieved. There is some
relation, though, given that one could consider that in our
case, we could define as soft goals the fact that each agent
achieves each goal. But, then, we would also need to specify
that all goals are achieved.

Conclusions and Future Work
We have described an approach that deals with the task of
Multi-Agent Planning with agents preferences over goals.
We describe how to model those preferences as a planning
metric to be used by state-of-the-art planners that can only
minimize plan costs. Then, the approach divides planning
in two main steps: assignment of public goals to agents and
planning. Each of these two steps can be configured to take
into account either actions costs, or agents preferences mod-
eled as penalties. We show results in several IPC domains
with a set of configurations. As expected, results show that

Table 5: Summary of results in all domains.
coverage pc pp cp cc
best-cost 78 75 77 79
load-balance 76 74 74 77
rest-achievable 80 80 80 80
all-achievable 73 72 71 73
centralized 74 77
ST pc pp cp cc
best-cost 57.64 50.75 58.21 62.23
load-balance 55.99 49.50 50.49 55.11
rest-achievable 77.11 67.71 70.06 73.31
all-achievable 51.29 47.03 47.40 50.02
centralized 52.24 61.28
SC pc pp cp cc
best-cost 65.09 59.27 64.35 70.20
load-balance 64.72 59.23 59.23 65.37
rest-achievable 69.41 66.50 66.50 69.41
all-achievable 65.41 55.76 55.00 65.41
centralized 58.96 71.31
SR pc pp cp cc
best-cost 54.92 66.90 59.20 50.45
load-balance 49.39 58.61 58.61 50.12
rest-achievable 48.04 55.67 55.67 48.04
all-achievable 46.12 62.83 61.91 46.12
centralized 69.98 52.29
(R,C) pareto-d. pc pp cp cc
best-cost 334 338 380 337
load-balance 259 297 293 269
rest-achievable 303 323 311 297
all-achievable 267 277 276 263
centralized 431 436

approaches that use cost as the main metric when planning
are better than those which use penalties when we want to ob-
tain solutions of better quality in terms of cost. The opposite
applies when we want to obtain better rewards; then we must
employ rewards (translated into penalties) in the planning
step. The approaches with more coverage are those which
employ the rest-achievable goal selection, and they are the
fastest too, because the goals are well distributed and the divi-
sion of goals does not overload the agents planning iterations.
The pareto-dominance depends on the domain structure; in
some domains the approaches using costs to plan are better
than the others and the opposite applies in other domains.

As future work, we plan to improve the quality of the
solutions using an anytime scheme and, later, to move to
optimal planning, considering a pareto-optimal search. Also,
we want to implement the soft goals compilation defined
in (Keyder and Geffner 2009). Using this compilation, the
goals of the original problem would remain as hard goals and
preferences agents have over goals would be modeled as soft
goals.

Acknowledgments
This work has been partially supported by Spanish MICINN
project TIN2011-27652-C03-02.

References
Arregui, J. P.; Tejo, J. A.; Linares-López, C.; and Borrajo, D.
2012. Steps towards an operational sensors network planning
for space surveillance. In Proceedings of the SpaceOps’12.
Borrajo, D. 2013a. Multi-agent planning by plan reuse.
Extended abstract. In Proceedings of the AAMAS’13, 1141–
1142.
Borrajo, D. 2013b. Plan sharing for multi-agent planning. In
Nissim, R.; Kovacs, D. L.; and Brafman, R., eds., Preprints
of the ICAPS’13 DMAP Workshop on Distributed and Multi-
Agent Planning, 57–65.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Proceedings of IJCAI, 73–78.
Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodrı́guez, A.; Fernández, S.; Arias,
J. D.; and Borrajo, D. 2008. SAMAP. A user-oriented adap-
tive system for planning tourist visits. Expert Systems with
Applications 34(2):1318–1332. ISSN: 0957-4174.
Cenamor, I.; de la Rosa, T.; and Borrajo, D. 2013. Ondroad
planner: Building tourist plans using traveling social network
information. In Proceedings of Conference on Human Com-
putation & Crowdsourcing (HCOMP’13). Works-in-Progress
& Demonstrations.
Crosby, M., and Rovatsos, M. 2011. Heuristic multiagent
planning with self-interested agents. In Proceedings of AA-
MAS, 1213–1214.
Garcı́a, J.; Florez, J. E.; Álvaro Torralba; Borrajo, D.; Linares-
López, C.; Ángel Garcı́a-Olaya; and Sáenz, J. 2013. Com-
bining linear programming and automated planning to solve
multimodal transportation problems. European Journal of
Operations Research 227:216–226.
Garcı́a-Olaya, A.; de la Rosa, T.; and Borrajo, D. 2011. Us-
ing relaxed plan heuristic to select goals in oversubscription
planning problems. In Advances in Artificial Intelligence,
volume 7023/2011 of Lecture Notes on Computer Science,
183–192. Springer Verlag.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Shlomo Zilberstein, J. K., and Koenig, S.,
eds., Proceedings of ICAPS’04, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away. Journal of Artificial Intelligence Research 36(1):547–
556.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In Proceedings of AAAI’13.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In Proceedings of ICAPS’04, 393–401.

